Groundwater resource vulnerability and spatial variability of nitrate contamination

Insights from high density tubewell monitoring in a hard rock aquifer: agriculture has been increasingly relying on groundwater irrigation for the last decades, leading to severe groundwater depletion and/or nitrate contamination. Understanding the links between nitrate concentration and groundwater resource is a prerequisite for assessing the sustainability of irrigated systems. The Berambadi catchment (M-TROPICS/BVET/Kabini CZO) in Southern India is a typical example of intensive irrigated agriculture and then an ideal site to study the relative influences of land use, management practices and aquifer properties on NO3 spatial distribution in groundwater.

The paper, published in February 2017 in Science of the Total Environment, can be found here.

More news

Reuse of bottom sediment from reservoirs to cropland is a promising agroecological practice that must be rationalized

In semi-arid areas, intermittent streams are often equipped with small reservoirs to store water for irrigation and/or groundwater recharge, and to capture sediments lost through erosion. These reservoirs must be periodically desilted to maintain their storage capacity. While bottom sediments are generally considered waste, their reuse in agricultural fields is a centuries-old practice in India. […]

Soil erosion control in tree plantations on steep slopes: Runoff water andsediment trapping efficiency of riparian grass buffer in mountainoushumid tropics

Riparian grass buffers reduce the velocity of water flowing over the soil surface during storms, capturing surface runoff (SR) and trapping soil particles eroded from cultivated slopes. Rarely quantified under steep slope conditions (>45 %), this phenomenon probably occurs in many mountain agroecosystems in the humid tropics. In Southeast Asia, teak plantations are often established on […]

Village settlements in mountainous tropical areas, hotspots of fecal contamination as evidenced by Escherichia coli and stanol concentrations in storm water pulses

Little is known about the contribution of villages to the fecal contamination of surface water in tropical rural areas. This study, published in the journal Environmental Science & Technology, documents E. coli and stanol concentration levels in surface runoff, and tracks the origin of the fecal contamination during flood events.

Search