Quantifying the effect of overland flow on Escherichia coli pulses during floods: use of a tracer-based approach in an erosion-prone tropical catchment

Bacterial pathogens in surface waters threaten human health. The health risk is especially high in developing countries where sanitation systems are often lacking or deficient. Considering twelve flash-flood events sampled from 2011 to 2015 at the Houay Pano catchment, and using Escherichia coli as a fecal indicator bacteria, our objective was to quantify the contributions of both surface runoff and sub-surface flow to the in-stream concentration of E. coli during flood events. We found that in-stream E. coli concentration is high regardless of the contributions of both surface runoff and sub-surface flow to the flood event. However, we measured the highest concentration of E. coli during the flood events that are predominantly driven by surface runoff. This indicates that surface runoff, and causatively soil surface erosion, are the primary drivers of in-stream E. coli contamination. This was further confirmed by the three models applied to each flood event (linear model, partial least square model, and mixing model). The three models showed that the percentage of surface runoff in stream flow was the best predictor of the flood event mean E. coli concentration. The mixing model yielded a Nash-Sutcliffe efficiency of 0.65 and showed that on average, 89% of the in-stream concentration of E. coli resulted from surface runoff, while the overall contribution of surface runoff to the stream flow was 41%.

The paper was published in the Journal of Hydrology. 50 days’ free access is available here.

More news

Articles

Experimental and modelling evidence of splash effects on manure borne Escherichia coli washoff

In tropical montane South-East Asia, recent changes in land use have induced increased runoff, soil erosion and instream suspended sediment loads. Land use change is also contributing to increased microbial pathogen dissemination and contamination of stream waters. Escherichia coli (E. coli) is frequently used as an indicator of faecal contamination. Field rain simulations were conducted […]

01.03.2021

Articles

Special Issue “Multiscale Impacts of Anthropogenic and Climate Changes on Tropical and Mediterranean Hydrology”

This Special Issue published in the Water journal and co-authored by Olivier Ribolzi (IRD-GET) shows the great interest of the scientific community in investigating how to characterize the environmental impact of anthropogenic and climatic changes on Tropical and Mediterranean hydrology, and also in determining which is the main source of changes depending on the regional […]

15.02.2021

Articles

Effects of hydrological regime and land use on in-stream Escherichia coli concentration in the Mekong basin, Lao PDR

In the basin of Mekong, over 70 million people rely on unimproved surface water for their domestic requirements. Surface water is often contaminated with fecal matter and yet little information exists on the underlying mechanisms of fecal contamination in tropical conditions at large watershed scales. The objectives of this paper were to (1) investigate the […]

10.02.2021

Search