The M-TROPICS CZO releases long-term meteorological, hydrological, sedimentary geochemical, and land use datasets in Cameroon, Lao PDR, and India

The CZO M-TROPICS (Multiscale TROPIcal CatchmentS) investigates the response of tropical catchments to global change based on long-term collection of meteorological, hydrological, sedimentary, geochemical, and land use data in partnership with academic and governmental institutions in various tropical countries. M-TROPICS includes in particular the experimental watersheds of Nyong in Cameroon (1994-), Houay Pano in Lao PDR (1998-), and of Mule Hole in India (2003-), which encompass a wide gradient of climates, bedrock types, topographies, and land-use conditions.

The datasets are published open access on the M-TROPICS website (https://mtropics.obs-mip.fr/catalogue-m-tropics/) and were the topic of three data notes published in the special issue « Research and Observatory Catchments: the Legacy and the Future » of the Hydrological Processes journal:

Data note for Nyong, Cameroon

Data note for Houay Pano, Lao PDR

Data note for Mule Hole, India

More news

Articles

Experimental and modelling evidence of splash effects on manure borne Escherichia coli washoff

In tropical montane South-East Asia, recent changes in land use have induced increased runoff, soil erosion and instream suspended sediment loads. Land use change is also contributing to increased microbial pathogen dissemination and contamination of stream waters. Escherichia coli (E. coli) is frequently used as an indicator of faecal contamination. Field rain simulations were conducted […]

01.03.2021

Articles

Special Issue “Multiscale Impacts of Anthropogenic and Climate Changes on Tropical and Mediterranean Hydrology”

This Special Issue published in the Water journal and co-authored by Olivier Ribolzi (IRD-GET) shows the great interest of the scientific community in investigating how to characterize the environmental impact of anthropogenic and climatic changes on Tropical and Mediterranean hydrology, and also in determining which is the main source of changes depending on the regional […]

15.02.2021

Articles

Effects of hydrological regime and land use on in-stream Escherichia coli concentration in the Mekong basin, Lao PDR

In the basin of Mekong, over 70 million people rely on unimproved surface water for their domestic requirements. Surface water is often contaminated with fecal matter and yet little information exists on the underlying mechanisms of fecal contamination in tropical conditions at large watershed scales. The objectives of this paper were to (1) investigate the […]

10.02.2021

Search