In-stream Escherichia coli modeling using high-temporal-resolution data with deep learning and process-based models

Contamination of surface waters with microbiological pollutants is a major concern to public health. Although long-term and high-frequency Escherichia coli (E. coli) monitoring can help prevent diseases from fecal pathogenic microorganisms, such monitoring is timeconsuming and expensive. Process-driven models are an alternative means for estimating concentrations of fecal pathogens. However, process-based modeling still has limitations in improving the model accuracy because of the complexity of relationships among hydrological and environmental variables. With the rise of data availability and computation power, the use of data-driven models is increasing. In this study led by Ather Abbas, PhD student at the Ulsan National Institute of Science & Technology (UNIST) in Korea, fate and transport of E. coli was simulated in the 0.6 km² Houay Pano tropical headwater catchment located Lao PDR, using both a deep-learning model and a process-based model. This study showcases the application of deep-learning-based models as an efficient alternative to process-based models for E. coli fate and transport simulation at the catchment scale.

The paper has been published open access in the journal Hydrology & Earth System Sciences Discussions.

More news

Exploring the nexus between hydroclimatic variability, population growth, land use land cover change, and long-term upper Nyong Basin River chemistry (Central Africa rainforest)

Hydrological and hydrogeochemical functioning of rivers depends on the relationship between climatic variability, land use and land cover change (LULCC), and population dynamics. However, there is a scientific gap on this relationship in the humid tropical zone of Central Africa. This study, led by David Eric Komba, aims to fill this gap by examining the […]

A float-controlled self-contained laser gauge for monitoring river levels in tropical environments

In this paper Dr Pierret and colleagues present the design, construction and performance of a self-contained float-controlled water level gauge for monitoring water levels in streams and small rivers. This device is inexpensive (cost of about EUR 220), easy to build (no electronics skills or specialized tools required; assembled in a few hours) and straightforward […]

Reuse of bottom sediment from reservoirs to cropland is a promising agroecological practice that must be rationalized

In semi-arid areas, intermittent streams are often equipped with small reservoirs to store water for irrigation and/or groundwater recharge, and to capture sediments lost through erosion. These reservoirs must be periodically desilted to maintain their storage capacity. While bottom sediments are generally considered waste, their reuse in agricultural fields is a centuries-old practice in India. […]

Search