In-stream Escherichia coli modeling using high-temporal-resolution data with deep learning and process-based models

Contamination of surface waters with microbiological pollutants is a major concern to public health. Although long-term and high-frequency Escherichia coli (E. coli) monitoring can help prevent diseases from fecal pathogenic microorganisms, such monitoring is timeconsuming and expensive. Process-driven models are an alternative means for estimating concentrations of fecal pathogens. However, process-based modeling still has limitations in improving the model accuracy because of the complexity of relationships among hydrological and environmental variables. With the rise of data availability and computation power, the use of data-driven models is increasing. In this study led by Ather Abbas, PhD student at the Ulsan National Institute of Science & Technology (UNIST) in Korea, fate and transport of E. coli was simulated in the 0.6 km² Houay Pano tropical headwater catchment located Lao PDR, using both a deep-learning model and a process-based model. This study showcases the application of deep-learning-based models as an efficient alternative to process-based models for E. coli fate and transport simulation at the catchment scale.

The paper has been published open access in the journal Hydrology & Earth System Sciences Discussions.

More news

Articles

Soil organic carbon stocks and quality in small-scale tropical, sub-humid and semi-arid watersheds under shrubland and dry deciduous forest in southwestern India

Soil organic carbon stocks and quality in small-scale tropical, sub-humid and semi-arid watersheds under shrubland and dry deciduous forest in southwestern India. Soil organic carbon is regulated by a dynamic interaction between vegetation inputs, organic matter degradation, and stabilization processes in soils, and its redistribution in the landscape. Many processes of the soil carbon cycle […]

21.12.2021

Articles

Overland flow during a storm event strongly affects stream water chemistry and bacterial community structure

As flood events are expected to become more frequent due to climate change, investigating how overland flow exports terrestrial nutrients, carbon and living organisms into aquatic systems is essential for understanding both soil and stream ecosystem status. In this paper led by Huong Le, former PhD student at iEES Paris, the authors assessed how dissolved […]

06.12.2021

Articles

Agricultural groundwater with high nitrates and dissolved salts given to pregnant mice alters brain development in the offspring

This new paper, at the interface between environment and health, shows that groundwater contaminated by agricultural inputs from the Indian site of Berambadi (M-TROPICS observatory), significantly impacts the brain development of mice when given to pregnant or lactating mice: fewer neurons, fewer astrocytes (white blood cells in the brain), and more dead cells in the […]

19.08.2021

Search