Effects of climate and anthropogenic changes on current and future variability in flows in the So’o River Basin (south of Cameroon)

Due to climate and environmental changes, sub-Saharan Africa (SSA) has experienced several drought and flood events in recent decades with serious consequences on the economy of the sub-region. In this context, the region needs to enhance its capacity in water resources management, based on both good knowledge of contemporary variations in river flows and reliable forecasts. The objective of this article, led by Valentin Brice Ebodé from Yaoundé 1 University, was to study the evolution of current and future flows in the So’o River Basin (SRB) in Cameroon. To achieve this, the Pettitt and modified Mann–Kendall tests were used to analyze hydrometeorological time series in the basin. The Soil and Water Assessment Tool (SWAT) model was used to simulate the future flows in the SRB. The results obtained show that for the current period, the flows of the So’o decrease due to the decrease in precipitation. For future periods, a change in precipitation in line with the predictions of the CCCma model will lead to a decrease in river discharge in the basin, except under the RCP8.5 scenario during the second period (2061–2100), where the authors note an increase compared to the historical period of approximately +4%. Results from the RCA4 model project an increase in precipitation which will lead to an increase in river discharge by more than +50%, regardless of the period and the scenario considered. An increase in discharges was noted in some cases despite a drop in rainfall, particularly in the case of discharges simulated for the second period (2061–2100) from the outputs of the CCCma model. This seems to be a consequence of the increase in impervious spaces, all the more the runoff increases during this period according to the model. Results from this study could be used to enhance water resources management in the basin investigated and the region.

This study was published open access in the Hydrology Research journal.

More news

Exploring the nexus between hydroclimatic variability, population growth, land use land cover change, and long-term upper Nyong Basin River chemistry (Central Africa rainforest)

Hydrological and hydrogeochemical functioning of rivers depends on the relationship between climatic variability, land use and land cover change (LULCC), and population dynamics. However, there is a scientific gap on this relationship in the humid tropical zone of Central Africa. This study, led by David Eric Komba, aims to fill this gap by examining the […]

A float-controlled self-contained laser gauge for monitoring river levels in tropical environments

In this paper Dr Pierret and colleagues present the design, construction and performance of a self-contained float-controlled water level gauge for monitoring water levels in streams and small rivers. This device is inexpensive (cost of about EUR 220), easy to build (no electronics skills or specialized tools required; assembled in a few hours) and straightforward […]

Reuse of bottom sediment from reservoirs to cropland is a promising agroecological practice that must be rationalized

In semi-arid areas, intermittent streams are often equipped with small reservoirs to store water for irrigation and/or groundwater recharge, and to capture sediments lost through erosion. These reservoirs must be periodically desilted to maintain their storage capacity. While bottom sediments are generally considered waste, their reuse in agricultural fields is a centuries-old practice in India. […]

Search