Effects of climate and anthropogenic changes on current and future variability in flows in the So’o River Basin (south of Cameroon)

Due to climate and environmental changes, sub-Saharan Africa (SSA) has experienced several drought and flood events in recent decades with serious consequences on the economy of the sub-region. In this context, the region needs to enhance its capacity in water resources management, based on both good knowledge of contemporary variations in river flows and reliable forecasts. The objective of this article, led by Valentin Brice Ebodé from Yaoundé 1 University, was to study the evolution of current and future flows in the So’o River Basin (SRB) in Cameroon. To achieve this, the Pettitt and modified Mann–Kendall tests were used to analyze hydrometeorological time series in the basin. The Soil and Water Assessment Tool (SWAT) model was used to simulate the future flows in the SRB. The results obtained show that for the current period, the flows of the So’o decrease due to the decrease in precipitation. For future periods, a change in precipitation in line with the predictions of the CCCma model will lead to a decrease in river discharge in the basin, except under the RCP8.5 scenario during the second period (2061–2100), where the authors note an increase compared to the historical period of approximately +4%. Results from the RCA4 model project an increase in precipitation which will lead to an increase in river discharge by more than +50%, regardless of the period and the scenario considered. An increase in discharges was noted in some cases despite a drop in rainfall, particularly in the case of discharges simulated for the second period (2061–2100) from the outputs of the CCCma model. This seems to be a consequence of the increase in impervious spaces, all the more the runoff increases during this period according to the model. Results from this study could be used to enhance water resources management in the basin investigated and the region.

This study was published open access in the Hydrology Research journal.

More news

Articles

Escherichia coli concentration, multiscale monitoring over the decade 2011–2021 in the Mekong River basin, Lao PDR

Bacterial pathogens in surface waters may threaten human health, especially in developing countries, where untreated surface water is often used for domestic needs. The objective of the long-term multiscale monitoring of Escherichia coli concentration in stream water, and that of associated variables (temperature, electrical conductance, dissolved oxygen concentration and saturation, pH, oxidation-reduction potential, turbidity, and […]

25.06.2022

Articles

Groundwater irrigation reduces overall poverty but increases socioeconomic vulnerability in a semiarid region of southern India

The development of irrigation is generally considered an efficient way to reduce poverty in rural areas, although its impact on the inequality between farmers is more debated. In fact, assessing the impact of water management on different categories of farmers requires resituating it within the different dimensions of the local socio-technical context. This study, led […]

13.06.2022

Articles

Distribution of Burkholderia pseudomallei within a 300‑cm deep soil profile: implications for environmental sampling

The environmental distribution of Burkholderia pseudomallei, the causative agent of melioidosis, remains poorly understood. This study performed in Lao PDR and supervised by Alain Pierret (IRD-iEES Paris) and Olivier Ribolzi (IRD-GET), in the frame of the PhD of Khemngeun Pongmala, provides novel information about a putative association of soil biogeochemical heterogeneity and the vertical distribution […]

25.05.2022

Search