Special Issue “Multiscale Impacts of Anthropogenic and Climate Changes on Tropical and Mediterranean Hydrology”

This Special Issue published in the Water journal and co-authored by Olivier Ribolzi (IRD-GET) shows the great interest of the scientific community in investigating how to characterize the environmental impact of anthropogenic and climatic changes on Tropical and Mediterranean hydrology, and also in determining which is the main source of changes depending on the regional situations and thematic issues.

The Editorial of the Special Issue is available open access.

More news

Reuse of bottom sediment from reservoirs to cropland is a promising agroecological practice that must be rationalized

In semi-arid areas, intermittent streams are often equipped with small reservoirs to store water for irrigation and/or groundwater recharge, and to capture sediments lost through erosion. These reservoirs must be periodically desilted to maintain their storage capacity. While bottom sediments are generally considered waste, their reuse in agricultural fields is a centuries-old practice in India. […]

Soil erosion control in tree plantations on steep slopes: Runoff water andsediment trapping efficiency of riparian grass buffer in mountainoushumid tropics

Riparian grass buffers reduce the velocity of water flowing over the soil surface during storms, capturing surface runoff (SR) and trapping soil particles eroded from cultivated slopes. Rarely quantified under steep slope conditions (>45 %), this phenomenon probably occurs in many mountain agroecosystems in the humid tropics. In Southeast Asia, teak plantations are often established on […]

Village settlements in mountainous tropical areas, hotspots of fecal contamination as evidenced by Escherichia coli and stanol concentrations in storm water pulses

Little is known about the contribution of villages to the fecal contamination of surface water in tropical rural areas. This study, published in the journal Environmental Science & Technology, documents E. coli and stanol concentration levels in surface runoff, and tracks the origin of the fecal contamination during flood events.

Search