AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods
Machine learning has shown great promise for simulating hydrological phenomena. However, the development of machine-learning-based hydrological models requires advanced skills from diverse fields, such as programming and hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine-learning models are a time-intensive process. In this study led by Ather Abbas, PhD student at UNIST, […]