Overland flow during a storm event strongly affects stream water chemistry and bacterial community structure

As flood events are expected to become more frequent due to climate change, investigating how overland flow exports terrestrial nutrients, carbon and living organisms into aquatic systems is essential for understanding both soil and stream ecosystem status. In this paper led by Huong Le, former PhD student at iEES Paris, the authors assessed how dissolved organic carbon, total suspended sediments, and stream bacterial diversity responded to stream discharge and overland flow during stormflow in the Houay Pano tropical catchment in Lao PDR, and emphasized that overland flow during a flood event strongly influences the structure of stream bacterial communities, further underlining the biological connectivity between terrestrial runoff and stream flow.

The paper has been published in the journal Aquatic Sciences.

More news

Reuse of bottom sediment from reservoirs to cropland is a promising agroecological practice that must be rationalized

In semi-arid areas, intermittent streams are often equipped with small reservoirs to store water for irrigation and/or groundwater recharge, and to capture sediments lost through erosion. These reservoirs must be periodically desilted to maintain their storage capacity. While bottom sediments are generally considered waste, their reuse in agricultural fields is a centuries-old practice in India. […]

Soil erosion control in tree plantations on steep slopes: Runoff water andsediment trapping efficiency of riparian grass buffer in mountainoushumid tropics

Riparian grass buffers reduce the velocity of water flowing over the soil surface during storms, capturing surface runoff (SR) and trapping soil particles eroded from cultivated slopes. Rarely quantified under steep slope conditions (>45 %), this phenomenon probably occurs in many mountain agroecosystems in the humid tropics. In Southeast Asia, teak plantations are often established on […]

Village settlements in mountainous tropical areas, hotspots of fecal contamination as evidenced by Escherichia coli and stanol concentrations in storm water pulses

Little is known about the contribution of villages to the fecal contamination of surface water in tropical rural areas. This study, published in the journal Environmental Science & Technology, documents E. coli and stanol concentration levels in surface runoff, and tracks the origin of the fecal contamination during flood events.

Search