Articles

In-stream Escherichia coli modeling using high-temporal-resolution data with deep learning and process-based models

Contamination of surface waters with microbiological pollutants is a major concern to public health. Although long-term and high-frequency Escherichia coli (E. coli) monitoring can help prevent diseases from fecal pathogenic microorganisms, such monitoring is timeconsuming and expensive. Process-driven models are an alternative means for estimating concentrations of fecal pathogens. However, process-based modeling still has limitations […]

06.12.2021

Overland flow during a storm event strongly affects stream water chemistry and bacterial community structure

As flood events are expected to become more frequent due to climate change, investigating how overland flow exports terrestrial nutrients, carbon and living organisms into aquatic systems is essential for understanding both soil and stream ecosystem status. In this paper led by Huong Le, former PhD student at iEES Paris, the authors assessed how dissolved […]

Agricultural groundwater with high nitrates and dissolved salts given to pregnant mice alters brain development in the offspring

This new paper, at the interface between environment and health, shows that groundwater contaminated by agricultural inputs from the Indian site of Berambadi (M-TROPICS observatory), significantly impacts the brain development of mice when given to pregnant or lactating mice: fewer neurons, fewer astrocytes (white blood cells in the brain), and more dead cells in the […]

19.08.2021

Decay Rate of Escherichia coli in a Mountainous Tropical Headwater Wetland

Fecal indicator bacteria like Escherichia coli (E. coli) are widely used to assess water contamination, but their behavior in tropical ecosystems is poorly documented. The main objectives of this study led by Paty Nakhle, PhD student at GET in collaboration with iEES Paris, were to: (i) evaluate decay rates (k) of the total, particle-attached and […]

30.07.2021

The M-TROPICS CZO releases long-term meteorological, hydrological, sedimentary geochemical, and land use datasets in Cameroon, Lao PDR, and India

The CZO M-TROPICS (Multiscale TROPIcal CatchmentS) investigates the response of tropical catchments to global change based on long-term collection of meteorological, hydrological, sedimentary, geochemical, and land use data in partnership with academic and governmental institutions in various tropical countries. M-TROPICS includes in particular the experimental watersheds of Nyong in Cameroon (1994-), Houay Pano in Lao […]

25.05.2021

Experimental and modelling evidence of splash effects on manure borne Escherichia coli washoff

In tropical montane South-East Asia, recent changes in land use have induced increased runoff, soil erosion and instream suspended sediment loads. Land use change is also contributing to increased microbial pathogen dissemination and contamination of stream waters. Escherichia coli (E. coli) is frequently used as an indicator of faecal contamination. Field rain simulations were conducted […]

01.03.2021

Special Issue “Multiscale Impacts of Anthropogenic and Climate Changes on Tropical and Mediterranean Hydrology”

This Special Issue published in the Water journal and co-authored by Olivier Ribolzi (IRD-GET) shows the great interest of the scientific community in investigating how to characterize the environmental impact of anthropogenic and climatic changes on Tropical and Mediterranean hydrology, and also in determining which is the main source of changes depending on the regional […]

15.02.2021

Effects of hydrological regime and land use on in-stream Escherichia coli concentration in the Mekong basin, Lao PDR

In the basin of Mekong, over 70 million people rely on unimproved surface water for their domestic requirements. Surface water is often contaminated with fecal matter and yet little information exists on the underlying mechanisms of fecal contamination in tropical conditions at large watershed scales. The objectives of this paper were to (1) investigate the […]

10.02.2021

Quantifying the effect of overland flow on Escherichia coli pulses during floods: use of a tracer-based approach in an erosion-prone tropical catchment

08.01.2021

Search